Agricultural mechanization today has a very broad meaning. This broad meaning includes production, distribution and utilization of a variety of tools, machinery and equipment for the development of agricultural land, planting, harvesting and primary processing [3, 15, 19, 25]. Today, the debate on development of agricultural mechanization turns into the debate on improving of agricultural techniques as well as helping them improve the sustainability of the entire agricultural system [19]. Evidence suggests that mechanization has a major impact on demand and supply of farm labor, agricultural profitability, and a change in rural landscape [24] and can be defined as an economic application of engineering technology to increase the labor efficiency and productivity. The United Nations Food and Agriculture Organization (FAO) and the United Nations Industrial Development Organization (UNIDO) concluded that the goal of agricultural mechanization is to reduce labor. Increasing productivity by updating executive operations in order to gain more power, increasing the level of cultivated land, moving toward industrialization and strengthening the market for rural economic growth and ultimately improving the livelihoods of farmers are the goals of mechanization [11, 12, 15].
In the pre-industrial stage in Western countries, one of the strategies to increase agricultural production was mechanization. At this stage, the agricultural sector used high-capacity machinery for crop operations that were suitable for large land and replacement of labor. History shows that agricultural mechanization has led to rapid industrialization in the western hemisphere. More recently in the twenty-first century, many Asian countries have embraced this western thinking and implemented mechanization policies in accordance with their own particular circumstances [5]. Mechanization technology changes with industrial growth in the country and economic and social progress of the farmers. While the loss of interest in agriculture by land owners and the lack of access to agricultural labor force for farm operations are among the most important social and economic issues in highly industrialized countries, increasing the area of cultivation and increasing labor productivity are the requirements of mechanization in developing countries. Therefore, mechanization technology requires dynamic and regional conditions [27]. For example, mechanization in countries such as the USA and Canada has dramatically changed from the perspective of cultivating based on the time of initial deployment, but in many developing countries, agriculture still has a strong dependence on labor [24]. To this end, developing countries, on their path to achieving food security, need to design their own strategies for agriculture.
Achieving food security in an environmentally sustainable way is one of our greatest challenges [4]. To this end, policies must be selected that, with the help of appropriate technology, will lead to sustainable development of agricultural production in developing countries and ultimately will lead to sustainable food security.
World food security and developing countries
In the first half of the twenty-first century, the world faces numerous challenges to feed the growing population, reduce poverty, protect the environment and face climate change. These challenges can sustain hunger and malnutrition, reduce economic growth—lead to political instability and irreversible damage to the environment and human survival [19, 28]. The latest estimate of hunger is 795 million people [14], and as the world’s population grows to over 9 billion people by 2050, it is anticipated that the need to meet the ever-increasing demand for more food is urgent and necessary [26]. As some sources predict, global food demand for that year will be twice as much as it is now [16]. As productivity growth is not enough in many developing countries to respond to rising demand, imported food in these countries are expected to increase dramatically [23]. Today, despite considerable investment in development, food insecurity is widespread throughout East and West Africa [22]. In Sub-Saharan Africa, we have witnessed an increase in imports over the last forties, where food products have not been responsive to growing populations [13]. Also, the Middle East, as one of the developing regions of the world, must cope with many of the unintended and unforeseen consequences of modernization. Increasing birth rate and rapidly growing population in the area, paying more attention to urbanization among policymakers and neglecting rural development, becuase of increasing rural-to-city migration, unbridled expansion of governments, etc., are among these consequences. The development of agriculture in this area has not been sufficient to provide a satisfactory level of national supply for achieving food security and the availability of domestic food resources [1]. On the other hand, food security in many countries of the region, such as Iraq, is heavily influenced by the oil-based economy, over three decades of war and its policies [31]. From Iran in the east to Morocco in the west, the Middle East has witnessed a deepening dependence on food imports, and this trend continues at a high rate. However, the Arab Spring showed that availability of food at affordable prices is still a prominent feature of many economic, social and political perspectives in the Middle East [1]. On the other hand, the World Food Crisis (2006–2006) has led many countries to reassess their dependence on imports for a significant portion of their food consumption [9]. These countries imposed trade restrictions and moved toward self-sufficiency. Due to the high prices and fluctuations of the market during this period, it was obvious that these countries would be concerned about the excessive dependence on the world food markets and take on such policies.
But on the contrary, some policymakers believe that food security will be achieved by considering comparative advantage in agricultural production, reducing trade restrictions and strengthening and development of international food trade [7]. This article, based on evidence from Iran, provides policies for achieving sustainable food security in developing countries. These development policies are based on agricultural mechanization.
Iran is the second largest country in the Middle East, both in terms of size and population. A quarter of Iran’s population lives in rural areas (Fig. 1). And 21.2% of the total working population of the country are employed in the agricultural sector [10]. Despite having oil revenues, agriculture plays an important role in the economy of Iran. Despite the declining share of agricultural sector in gross domestic product (GDP), this figure is estimated at about 12% in 2017 (Fig. 2).
Fig. 1 Rural and urban population of Iran Full size image
Fig. 2 Source: World Bank (OCT 28, 2017) Agricultural value added. Full size image
Agricultural development has long been at the heart of Iran’s food and agricultural policies. But statistics show the deep dependence of food security on imports. For example, the dependence ratio for grain imports in Iran is 28.7% in 2014, and the country’s food imports are still high (Fig. 3). The exploitation of water resources in Iran, with more than 70% above the global average, is inefficient [17]. Meanwhile, 74% of Iran’s land, about 120 million hectares, is inappropriate for agriculture [18]. It is expected that in the years to come, there will not be enough water even for such a small amount of agricultural land. These conditions along with its political and international issues and its foreign policies, make the future of agriculture and food security in Iran more difficult and challenging. Under these circumstances, Iran must identify current challenges and focus on the future of food and agriculture.
Fig. 3 Value of food imports Full size image
Agricultural mechanization strategy and food security
Considering the necessity of identifying and responding to the current and future challenges of food security in order to lead, collaborate and design the related strategies [30], this paper, by examining the current state of Iran and identifying challenges and threats, seeks to provide strategies to promote the role of agricultural mechanization in agricultural development as a solution to the achievement of food security.
Any attempt to increase agricultural production without considering a proper mechanization strategy would never have a positive outcome [20]. A sustainable agricultural mechanization strategy is a planning strategy that contributes to the goal of sustainable agriculture, and at the same time accepts food self-sufficiency and generates economic and inclusive growth as well as social benefits [19].
Increasing food production along with maintaining natural resources is not an easy task. The second green revolution, which in the second half of the last century was able to produce more than twice the amount of food, is currently not in a good position. The growth rate of major cereal yields (wheat, rice and corn) is declining. Increasing food production requires resource-friendly methods, and this will require the development of new mechanization technology [26]. There are many technology options, but there is relatively scarce evidence of supporting decision making in the form of technology [23]. While one of the major constraints on developing and modernizing production in developing countries is the low level of engineering technology in agriculture [12]. Despite its many values and undeniable benefits, which are briefly mentioned above, mechanization is still considered as an input, such as other inputs, like fertilizers, seeds, and chemical protection products and in the most optimistic way, it is one of the combined management tools aimed at maximizing farmers’ productivity and profits [8]. Despite the impact of agricultural mechanization on the agricultural production process, due to the lack of comprehensive research on the extent of the effect of mechanization components on the production and its fields of application, there were always differences of opinion and doubts about the role of mechanization in the agricultural sector. This has prevented the stabilization and improvement in agricultural mechanization in the agricultural sector and even in the sectors of industry and services in developing countries. For example, the FAO report on the state of mechanization in the African countries [12] indicates that most African countries have not taken serious plans for sustainable mechanization, and efforts have failed to reach mechanization issues due to the micro, rather than macro, approaches. Studies show that crop production is more beneficial in areas where agricultural mechanization is provided [15]. According to the research conducted in mechanized agricultural areas, yields were significantly higher than non-mechanized areas. The use of pesticides was also more effective, and the land and fertilizers were used optimally. This is the need of the world today, achieving food security by preserving natural resources for future generations.